
MLCompare: A Facilitating
Framework for Machine
Learning Research

Victoria Stodden vcs@stodden.net
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

DataScience@HEP
FNAL, Batavia, IL

May 9, 2017

Agenda

1. Computational Reproducibility and the Scholarly Record

2. A Case Study: Resolving Discrepancies in Genome-based Disease
Classification

3. Introducing MLCompare: A Framework for Extensible Machine Learning
Research

2/27

In the Future: A Reproducible Scholarly Record

We claim:

• Digital scholarly objects needed to reproduce and verify findings will be
available with the published claim (i.e. source data, tuning parameters,
source code and algorithm implementation, workflows, ...)

• This will imply novel interactions with the scholarly record that advance
scientific discovery.

3/27

In the Future: Querying a Reproducible Scholarly Record

• List all of the image denoising algorithms ever used to remove white noise
from the famous “Barbara” image, with citations;

• List all of the classifiers applied to the famous acute lymphoblastic leukemia
dataset, along with their misclassification rates;

• Create a unified dataset containing all published whole-genome sequences
identified with mutation in the gene BRCA1;

• Randomly reassign treatment and control labels to cases in published clinical
trial X and calculate effect size. Repeat many times and create a histogram of
effect sizes. Do this for all clinical trials published in 2003 and list the trial
name and histogram side by side.

Courtesy Donoho and Gavish, 2012

4/27

The Acute Lymphoblastic Leukemia Dataset

Introduced in Golub et al. “Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring” (1999): “cancer classification
based on gene expression monitoring by DNA microarrays is described and
applied to human acute leukemias [to] discover the distinction between acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)”

In joint work with Xiaomian Wu and April Tang, we tried the scholarly record query.

5/27

The Acute Lymphoblastic Leukemia Dataset Query

We wanted:
• A list of all classifiers applied to the Golub dataset;
• A comparison of their misclassification rates.

A literature search produced 30 articles, but they did not give comparable
misclassification rates.

Our next step was to create the table of misclassification rates. We identified 5
articles for which this seemed possible.

6/27

Our (Naive) Expectation

We obtained the original Golub data. We hoped to apply the various machine
learning algorithms from the literature, in the 5 cases we identified.

We found that the articles implemented (at least) three steps, each varying from
one article to the next:

1. data preprocessing,
2. feature selection,
3. application of machine learning algorithm.

7/27

Computational Steps in the 5 Chosen Articles

8/27

Learning Algorithms Applied (typically 47ALL, 25AML)

Paper Data Size Algorithm(s) Applied
1 72× 6817 Golub Classifier: informative genes+weighted vote
2 72× 6817 Golub Classifier: informative genes+weighted vote
3 72× 7129 Nearest Neighbor; SVM(linear kernel, quadratic ker-

nel); Boosting (100, 1000, 10000 iterations)
4 72× 7129 SVM(top 25, 250, 500, 1000 features)
5 72× 7070 MVR(median vote relevance); NBGR(naive bayes

global relevance); MAR(Golub relevance)+SVM
6 72× 6817 Logistic and Quadratic discriminant analysis
7 72× 7129 SVM
9 72× 6817 Linear and Quadratic discriminant analysis; Classifica-

tion trees; NN
10 72× 7129 Decision Trees; AdaBoost
11 72× 7129 MAVE-LD, DLDA, DQDA, MAVE-NPLD
12 72× 7129 SIMCA classification
...

9/27

Classification Efficiencies: Algorithm × Feature Selection

1 3 6PCA 6PLS 9 29
Paper1 Classifier 0.912 0.941 0.971 0.971 0.958 0.706
Paper3 NN 0.971 0.941 0.912 0.941 1 0.912
Paper3 SVM Linear 0.971 0.971 0.941 0.971 1 0.765
Paper3 SVM Quadratic 0.971 0.882 0.971 0.971 1 0.912
Paper3 Adaboost 0.912 0.912 0.971 0.971 0.958 0.941
Paper6 PCA logit 0.971 0.971 0.971 1 0.853
Paper6 PCA QDA 0.941 0.912 0.941 1 0.853
Paper6 PLS logit 0.971 0.882 0.971 1 0.853
Paper6 PLS QDA 0.971 0.882 0.971 1 0.853
Paper9 NN 0.971 0.912 0.853 0.971 0.958 0.971
Paper9 Decision Tree 0.912 0.912 0.971 0.971 0.917 0.735
Paper9 Bagging 0.971 0.912 0.971 0.971 0.958 0.735
Paper9 Bagging (CPD) 0.941 0.912 0.971 0.971 0.917 0.794
Paper9 LDA 0.912 0.912 0.971 0.971 0.958 0.794
Paper9 Diagonal LDA 0.941 0.912 0.971 0.971 0.958 0.765
Paper9 Diagonal QDA 0.912 0.912 0.971 0.971 0.958 0.735
Paper29 Bayesian Network 0.735 0.882 0.971 0.971 1 0.647

10/27

Conclusion

• Hard to synthesize (200+ student hours)
• Many points of variability: starting dataset; preprocessing steps; feature
selection methods; algorithm choice; tuning of algorithm...

• Details not well-captured in the traditional article, making comparisons difficult
or impossible.

Would be easier if:
• there was prior agreement on the dataset,
• prior agreement on hold-out data for testing,
• full disclosure of feature selection steps,
• full disclosure of algorithm application and parameter tuning.

11/27

The “CompareML Framework”

Adapt the Common Task Framework from Natural Language Processing:
“CompareML Framework”

• Agreement on datasets prior to analysis, conferences around those datasets,
• Hold-out data held by a neutral third party (NIST), not seen by researchers,
• Researchers distinguish and specify feature selection and preprocessing vs
learning algorithm application,

• Send code to the third party who returns your misclassification rate on the test
data.

Side effect: training data and code/algorithm shared.

12/27

The effect of infrastructure
choices on the variability of a

scientific result

Matthew Krafczyk krafczyk.matthew@gmail.com
National Center for Supercomputing Applications

DataScience@HEP
FNAL, Batavia, IL

May 9, 2017

Outline

• Some Definitions
• Preliminary Work
• Our Questions

14/27

Some Definitions

• Interested in programs which:
• Produce output deterministically in single threaded mode.
• Produce output non-deterministically in multi threaded mode.
• Produce output data from which some scientific result can be extracted.

Program

Input Data

Output Data Analysis Program Q

15/27

Problem Definition

• Interested in programs which:
• Produce output deterministically in single threaded mode.
• Produce output non-deterministically in multi threaded mode.
• Produce output data from which some scientific result can be extracted.

P(·)Di Q

P(Di) = Q (1)

16/27

Some Definitions: Intrinsic Uncertainty

• P(·) is run multiple times with identical input data/initial conditions

P(Di)

1

P(Di)

2

· · · P(Di)

n

Q1 Q2
· · · Qn

[P(Di)]j = Qj → {P(Di)} = f(Q) ≈ Q±∆Q (2)

• We call ∆Q the Intrinsic Uncertainty of Q for this ensemble of computations.

17/27

Some Definitions

• The character of f(Q) and in turn, Q and ∆Q may depend on many factors
such as:

• Compiler Vendor
• Compiler Version
• Compiler Optimization Settings
• Number of Threads
• Program Settings such as grid resolution, or static/adaptive
• Network Traffic (If using mpi across multiple nodes)
• Underlying system health

• Some of these factors the user has control over, and others the user does not.

18/27

Some Definitions: Summary

• We wish to measure Intrinsic Uncertainty as a function of
1. Compiler Choice
2. Program Settings
3. Execution Environment

19/27

Preliminary Work: Enzo: Halos

20/27

Preliminary Work: Enzo: Variation

• Given identical initial conditions on Blue Waters, 200 runs of multithreaded
Enzo produces varying results!

Show GIF!!

21/27

plots/animated.gif

200 Simulations: Enzo: Variation

22/27

200 Simulations: Enzo: Variation

23/27

Preliminary Work

• Compilers
• GCC (6.2.0)
• Intel (16.0.3)
• PGI (16.9.0)

• Compiler Optimization
• -O0: No Optimization
• -O1: Basic Optimization
• -O2: High level of Optimization
• -O3: Aggressive Optimization

24/27

Preliminary Work
Comp. Comp. Comp. Time [hours] Mass [1043g] Mass [1043g] Number
Vendor Version Opt. Mean Std. Dev. Matched

gcc 6.2.0

-O0 16.5− 18.5 2273 13(4) 200
-O1 6− 8 2268 14(4) 200
-O2 6.9− 7.7 2273 13(4) 200
-O3 6.8− 7.8 2273 14(4) 199

intel 16.0.3

-O0 27.5− 34 2269 14(5) 200
-O1 5.9− 6.6 2270 13(4) 185
-O2 4.9− 5.6 2270 14(4) 200
-O3 5.0− 5.7 2270 14(4) 199

pgi 16.9.0

-O0 10.6− 12.1 2270 14(4) 199
-O1 9.5− 10.8 2271 13(4) 200
-O2 7.5− 8.6 2271 13(4) 200
-O3 7.5− 8.0 2271 14(4) 198

25/27

Preliminary Work: Conclusions

• Intrinsic uncertainty does not appear to increase with increasing optimization
in this application.

• Total intrinsic uncertainty in largest halo mass is small (0.5% effect)
• Matching algorithm had trouble with halo 2270 with some simulations! (Not a
small effect!!)

• Next Steps: Role of MPI implementation, number of threads, and network
communication

26/27

Our Questions

• Examples of simple (but multi-threadable) deterministic codes?
• Other sources of error? (at the infrastructure level)
• Do you know anybody else working on this?
• What is the relationship of this work to Uncertainty Quantification? (UQ)

27/27

Backup Slides

28/27

Future Work

• Can system faults adversly affect the output of scientific simulation without
obvious signs?

• Teaming up with the DEPEND group from UIUC to measure this

• Does intrinsic uncertainty change depending on the property measured?
• Measure intrinsic uncertainty with software other than Enzo

29/27

Blue Waters Info

• 22,640 Cray XE6 nodes (2 AMD 6276 “Interlagos” processors)
• 4,228 Cray XK7 nodes (1 AMD 6276 “Interlagos” processor with an NVIDIA
GK110 (K20X) GPU

• Cray Gemini torus interconnect
• 300 PB Lustre filesystem

30/27

Work Done: Spack

• We use Spack to manage the build and run environment for Enzo
• Spack is new and some development was required for use on Blue Waters
• Development is still ongoing due to peculiarities with Cray’s compiler wrappers

31/27

Software Used: YT/rockstar

• We use YT to analyze the output of Enzo.
• Rockstar is the halo finder we used
• Both were compiled with Spack on Campus Cluster

32/27

Simulation details

• Each job run on blue waters was with a 323 root grid, with 7 levels of
refinement, 10Mpc on a side and simulated from z = 99 (near beginning of
universe) to z = 0 (present day) and 16 threads.

• Job completion times ranged from 30 hours to 4 hours. (Completable with one
job)

• Halo analysis was performed on the Campus Cluster due to Cray compiler
wrapper interference with analysis tools.

• This is a LOW RESOLUTION simulation.

33/27

Superhalo Finding

1. Halos are found using rockstar in each simulation.
2. Halos in different simulations are matched up using a ‘distance’ metric which

balances mass, virial radius, and position.
3. If halos are matched consistently throughout all simulations, they are labelled

as a ’superhalo’ and their properties can be studies across simulations.
4. Each simulation has about 50 labelled halos, but across all simulations there

are about 35 super halos.

34/27

